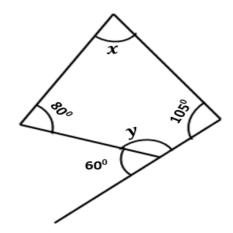


INDIAN SCHOOL AL WADI AL KABIR

Pre-Mid-Term Examination (2024-25)


Sub: MATHEMATICS

Class: VIII MARKING SCHEME Max Marks: 30 Date: 04/06/24 Set -I Time: 1 hour

Section A: Multiple Choice Question (Q.1 to Q.6) of 1 mark each								
1.	$3 \times 10^5 + 1 \times 10^3 + 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0 + 2 \times 10^{-2}$ is equal to							
	A		В		С		D	301258.02
2.	The product of $\frac{13}{15}$ and additive inverse of $\frac{-5}{26}$							
	A		В		С	$\frac{1}{6}$	D	
3.	The value of $\left\{\frac{7}{5} \times \left(\frac{-3}{11}\right)\right\} + \left\{\frac{7}{5} \times \frac{4}{11}\right\}$							
	A	<u>7</u> 55	В		С		D	
4.	The	angle sum of a conv	ex p	olygon with number o	of side	es 9 is:	I	
	A		В		С	1260	D	
5.	Name the property illustrated: $\frac{-35}{8} \times \frac{9}{11} = \frac{9}{11} \times \frac{-35}{8}$							
	A		В	Commutative property	С		D	
6.	{2 ⁶	$\{2^6 \div 2^3\} + 2^0$ is equal to						
	A		В	9	С		D	
7.	If the three angles of a quadrilateral are 70°, 110° and 80°, then what is the measure of its fourth angle?							
	A		В	100°	С		D	
8.	The	sum of all angles of	a re	gular octagon is 1080	⁰ . Th	e measure of each	inter	ior angle is:
	A	_	В		С	135°	D	

	Section B : Source based questions (Q.9 to Q.12) of 1 mark each Teacher took the students of class 8 to the junior bio lab. It was a class related to view very small things through the micro scope and compare the size of the small objects which is visible through our eyes. While the experiment was going on Gourav, Neena and Bibin are started telling the numbers using powers and exponents.							
9.	The average diameter of a Red Blood cell is 0.0000072 m. The standard form 0.0000072 m is:							
	A	7.2×10^{-6}	В		С		D	
10.	In an experiment they used 5^{-5} ml of solution A and 5^2 ml of solution B. Then $\{5^{-5}\times 5^2\}=$							
	A		В		С		D	5-3
11.	1	A crystal of sodium chloride of weight 2^4 milligrams is used in the lab for an experiment. The multiplicative inverse of 2^4 is:						
	A	2^{-4}	В		С		D	
12.	The size of the plant cell is 3.275×10^{-5} . The usual form the given number can be written as:							
	A		В	0.00003275	С		D	
	1	Section C	: Lon	g Answer Questions (Q13	to Q.16)	<u>I</u>	
13.	Find the value of m' if $11^{2m+1} \times 11^4 = 11^{17}$ (Show working) (2m)						(2m)	
Ans:	11^{2n}	$11^{2m+1} \times 11^4 = 11^{17}$						
	2m +	$2m + 1 + 4 = 17$ $(\frac{1}{2} mark)$						
	2m +	$2m + 5 = 17$ $(\frac{1}{2} mark)$						
	2m=	17-5 $(\frac{1}{2})$	- mar	<i>k</i>)				
	m=12	$2 \div 2 = 6 \qquad \left(\frac{1}{2}\right)$	mar	<i>k</i>)				

14. Find the values of x and y. (Show working) (2m)

Ans:
$$y + 60 = 180$$
(linear paper)

$$y=180-60=120^0$$
 -----(1 mark)

120 + 105 + 80 + x = 360 (angle sum property)

$$305 + x = 360$$
 -----($\frac{1}{2}$ mark)

$$x=360-305=55^{\circ}$$
 ----- $(\frac{1}{2} mark)$

Simplify:
$$\frac{125 \times t^{-5} \times 3^{-3}}{5^2 \times 3^{-5} \times t^{-10}}$$
 $(t \neq 0)$ (3m)

Ans:
$$125 \times t^{-5} \times 3^{-3}$$

$$5^2 \times 3^{-5} \times t^{-10}$$

$$= \frac{5^{3-2} \times t^{-5+10} \times 3^{-3+5}}{1} -----[2 \max(\frac{1}{2} \max(each \ law))]$$

$$=\frac{5^{1} \times t^{5} \times 3^{2}}{1} = 5 \times 9 \times t^{5} = 45t^{5} \qquad -----(\frac{1}{2} + \frac{1}{2} mark)$$

Represent
$$\frac{-3}{5}$$
, 0, $\frac{1}{5}$, $\frac{2}{5}$ on the same number line. (3m)

Ans: Number line-----(1 mark)

Each number-----($\frac{1}{2}$ marks each)

Section D:	Long Answer Question	of 4 marks &Case stu	udv (0.17 & 0.18)
	Long / movier Question	or initiating execuse set	, a, (Qi±, a, Qi±o)

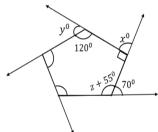
17.		5		4
	Insert 4 rational numbers between	_	and ,	Ξ.
		7	;	5

Ans:

$$\frac{5}{7}$$
 and $\frac{4}{5}$ LCM = 20 -----(1 mark) $\frac{25}{35}$ and $\frac{28}{35}$ Multiply by 10 -----(1 mark)

$$\frac{250}{350}$$
 and $\frac{280}{350}$ -----(1 mark)

Ans:
$$\frac{251}{350}$$
, $\frac{252}{350}$, $\frac{253}{350}$ and $\frac{254}{350}$ -----(1 mark)


18. **Case Study:**

Shyama regularly go for an evening walk in a garden near seashore. In the garden there is a resting area which is in a pentagonal shape. Observe the adjoining figure and answer the following questions:

b) How many diagonals does a pentagon have?

Ans:

a)
$$x = 180 - 90 = 90^{\circ}$$
 (linear pair) ----- (1 mark) $y = 180 - 120 = 60^{\circ}$ (linear pair) ----- (1 mark)

$$z + 55 + 70 = 180^{\circ}$$
 (straight angle)

$$z + 125 = 180^{\circ}$$

$$z = 180^{\circ} - 125 = 55^{\circ} \qquad ------$$

$$z = 180^{\circ} - 125 = 55^{\circ}$$
 ------ (1 mark)
b)Number of diagonals in a pentagon= $\frac{n(n-3)}{2} = \frac{5(5-3)}{2} = \frac{5\times 2}{2} = 5 \ diagonals$ ----- (1 mark)